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Using the real-space renormalization-group transformation, we study the phase transitions of the Ashkin-
Teller model including the antiferromagnetic interactions on a type of diamond hierarchical lattices, of which
the number of bonds per branch of the generator is odd. The isotropic Ashkin-Teller model and the anisotropic
one are, respectively, investigated. We find that the phase diagram, for the isotropic Ashkin-Teller model,
consists of five phases, two of which are associated with the partially antiferromagnetic ordering of the system,
while the phase diagram, for the anisotropic Ashkin-Teller model, contains 11 phases, six of which are related
to the partially antiferromagnetic ordering of the system. The correlation length critical exponents and the
crossover exponents are also calculated.
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I. INTRODUCTION

As the continuation of the previous work[1], in which we
have investigated the anisotropic Ashkin-Teller(AT) model
[2] with the ferromagnetic interactions on a family of
diamond-type hierarchical lattices, and obtained the phase
diagram as well as the critical exponents, this work is fo-
cused on the AT model including the antiferromagnetic inter-
actions on a type of diamond hierarchical lattices, of which
the number of bonds per branch of the generator is odd. Fan
[3] has shown that the effective Hamiltonian for the AT
model can be expressed as,

H = o
ki j l

sKssisj + Kssis j + K4sisisjs jd,

where each lattice sitei is associated with two Ising spinssi
andsi, Ks, Ks, andK4 are permitted to take negative values
to reflect the antiferromagnetic interactions, and the sumoki j l

runs over all the nearest-neighbor pairs of spins. The general
AT model remains unsolved exactly although Wegner[4] has
shown the equivalence of the AT model to a staggered eight-
vertex model.

The isotropic AT model in two dimensions has been stud-
ied extensively by means of experimental technique[5],
Monte Carlo simulations[6–9], and various theoretical meth-
ods [10–13]. It has been shown[14] that the phase diagram
has a very rich structure and consists of five phases, two of
which are related to the partially antiferromagnetic ordering
of the system, i.e.,(a) ksl=0, ksl=0, andkssl is antiferro-
magnetically ordered;(b) both ksl andksl are antiferromag-
netically ordered, butkssl is ferromagnetically ordered. Us-
ing series analysis and Monte Carlo simulations, Ditzianet
al. [15] determined the phase diagram for the isotropic AT
model in three dimensions, which is much richer than, and

quite different from that in two dimensions. However, there
appears only one partially ordered antiferromagnetic phase,
in which ksl=0, ksl=0, and kssl is antiferromagnetically
ordered. Their results were supported subsequently by other
works [16–18]. For the anisotropic AT model, in which the
two Ising systems were not identical with each other, the
structure of the phase diagram has been investigated by a
variety of approaches, including exact duality[19],
renormalization-group transformation[20], finite-size-
scaling [21], mean-field approximation, and Monte Carlo
simulations[22]. Nonetheless, as far as we know, the par-
tially ordered antiferromagnetic phases have not yet been
obtained in the phase diagram for the anisotropic AT model.

As noted by Berker and Ostlund[23], certain
renormalization-group transformations, which are only ap-
proximate on the translational symmetry lattices, become ex-
act on the hierarchical lattices. On the other hand, the hier-
archical lattices are highly inhomogeneous[24], and they
may provide insights into other low-symmetry problems
such as random magnets, surfaces, etc. Therefore, much
work on the hierarchical lattices has been motivated recently
[25–28]. So far, most of the research on the AT model has
been focused on the translational symmetry lattices, i.e., Bra-
vais lattices, whereas much less attention has been paid to
the study of this model on the fractal lattices, e.g., the hier-
archical lattices. For the ferromagnetic case, Marizet al. [29]
and Bezerraet al. [30] have studied the isotropic and aniso-
tropic AT model on a kind of self-dual hierarchical lattice,
respectively.

In this paper, using the real-space renormalization-group
transformation, we study the phase transitions of the Ashkin-
Teller model including the antiferromagnetic interactions on
a type of diamond hierarchical lattices, of which the number
of bonds per branch of the generator is odd. The isotropic
Ashkin-Teller model and the anisotropic one are, respec-
tively, investigated, and the reduced interaction parameters
Ks, Ks, andK4 are permitted to take negative values. We find
that the phase diagram, for the isotropic Ashkin-Teller*Email address: jianxinle@yahoo.com
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model, consists of five phases, two of which are associated
with the partially antiferromagnetic ordering of the system,
while the phase diagram, for the anisotropic Ashkin-Teller
model, contains 11 phases, six of which are related to the
partially antiferromagnetic ordering of the system. In addi-
tion, the correlation length critical exponents and the cross-
over exponents are also calculated. In the following section,
the phase transitions of the isotropic Ashkin-Teller model
including the antiferromagnetic interactions on this type of
diamond hierarchical lattices is investigated. In Sec. III, we
study the phase transitions of the anisotropic Ashkin-Teller
model including the antiferromagnetic interactions on the
same lattices. Finally, we give a brief discussion and conclu-
sion in Sec. IV.

II. THE ISOTROPIC ASHKIN-TELLER MODEL

For the diamond-type hierarchical lattices[31,32], their
constructions can be realized through iterative decoration of
a two-point bond by a generator, which has two vertices
joined by m branches ofb bonds. Figure 1 shows the con-
structions of two members of the family.

In the previous work[1], we have obtained, respectively,
two sets of recursion relations, in the parameter spaces
sKs,Ks ,K4d and sv1,v2,v3d, of the renormalization-group
transformation of the anisotropic AT model on a family of
diamond-type hierarchical lattices, where the three new
parameters are defined asv1=exps−2Ks−2K4d, v2

=exps−2Ks−2K4d, and v3=exps−2Ks−2Ksd. Therefore, let
Ks=Ks=K or v1=v2, we can easily obtain the recursion re-
lations, in the parameter spacessK ,K4d and sv1,v3d, of the
renormalization-group transformation of the isotropic AT
model on the same lattices. However, in order to reproduce
the two-sublattice structure of a simple antiferromagnetic
ground state, herein we shall restrict ourselves to a type of
diamond hierarchical lattices, of which the number of bonds
per branch of the generator is odd, i.e.,b=odd. In contrast,
the simple diamond-type hierarchical lattices withb=even
are only suitable to describe the ferromagnetic ground state.
The obtained recursion relations of the renormalization-
group transformation will produce all fixed points and result
in the phase diagram for the isotropic AT model including the
antiferromagnetic interactions on the diamond hierarchical
lattices for any givenm andb.

When the number of bonds per branch of the generator of
the diamond hierarchical lattices is odd, i.e.,b=odd, there
are eight nontrivial fixed points in total. The locations of
these nontrivial fixed points in the parameter spacesv1,v3d
are s0,vId, svI ,1d, s0,1/vId, s1/vI ,1d, svI ,vI

2d,
s1/vI ,1 /vI

2d, s1,1/vPd, and svP,vPd, respectively. It is
worth noting that bothvI andvP are dependent on the values
of m and b [1]. As an example, Table I shows the case of
b=3 andm=4, wherevI =0.3113 andvP=0.2209.

Through the calculation of the eigenvaluesl1 and l2 of
the renormalization-group transformation matrixR derived
from the recursion relations, the correlation length critical
exponentn and the crossover exponentf can be obtained
from the scaling factorb and the relevant eigenvalues of the
transformation matrixR for any givenm andb [33–35]. As
an example, the results in the case ofb=3 and m=4 are
presented in Table I, from which one can find that the non-
trivial fixed pointsI1, I2, I3, I4, I5, andI6 are associated with
only one identical relevant eigenvalue, and have the same
correlation length critical exponentn as the Ising universality
class [31], whereas the nontrivial fixed pointsP1 and P2,
with two relevant eigenvalues, are in the same case and pos-
sess the same correlation length critical exponentn identical
with that of the four-state Potts model on the same lattice, as
well as the same crossover exponentf. Both the correlation
length critical exponentn and the crossover exponentf are
dependent on the concrete geometrical parametersb andm,
and not completely determined by the fractal dimension of
the lattice[1].

As shown in Figs. 2 and 3, which correspond to the case
of b=3 andm=4 in the parameter spacesv1,v3d and the
parameter spacesK4,Kd, the phase diagram consists of five
phases when the number of bonds per branch of the genera-
tor of the diamond hierarchical lattices is odd, i.e.,b=odd.
The details of these five phases are as follows: in phase I the
system is ferromagnetically ordered,ksl, ksl, and kssl all
being nonzero; in phase II the system is fully disordered,ksl,
ksl, andkssl all being zero; in phase III there is a partially
ferromagnetic ordering,kssl being nonzero, butksl and ksl
being zero; in phase IV there is a partially antiferromagnetic
ordering,kssl alternating from site to site, butksl and ksl
being zero; in phase Vkssl is ferromagnetically ordered, but
ksl and ksl are antiferromagnetically ordered. Therefore,

FIG. 1. First two stages of the constructions of two members of
the family of the diamond-type hierarchical lattices.

TABLE I. Nontrivial fixed points with eigenvalues and critical
exponents for the isotropic AT model on a type of diamond hierar-
chical lattice in the case ofm=4 andb=3.

Fixed point sv1,v3d sl1,l2d n f

I1 0,0.3113 2.4481,0 1.2271

I2 0.3113,1 2.4481,0 1.2271

I3 0,3.2119 2.4481,0 1.2271

I4 3.2119,1 2.4481,0 1.2271

I5 0.3113,0.09693 2.4481,0.4994 1.2271

I6 3.2119,10.3164 2.4481,0.4994 1.2271

P1 1,4.5265 2.8689,1.5606 1.0424 0.4223

P2 0.2209,0.2209 2.8689,1.5606 1.0424 0.4223
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when considering the odd values ofb and the antiferromag-
netic interactions, one can obtain two new phases IV and V
associated with the partially antiferromagnetic ordering of
the system, which have not been found in the previous work
[1].

The above results, concerning the structure of the phase
diagram for the isotropic AT model including the antiferro-
magnetic interactions on the diamond hierarchical lattices

with b=odd, are consistent with those in Ref.[14]. It is
worth noting that Costaet al. [36] have obtained the global
mean-field phase diagram of the isotropic AT model, which
consists of six phases, i.e.,(a) the paramagnetic phase, where
ksl=0, ksl=0, andkssl=0; (b) the symmetric Baxter phase,
whereksl=kslÞ0 andksslÞ0; (c) the partially ordered fer-
romagnetic phase, whereksl=0, ksl=0, andksslÞ0; (d) the
partially ordered antiferromagnetic phase, whereksl=0, ksl
=0, and kssl is antiferromagnetically ordered;(e) the par-
tially ordered ferromagnetic phase, wherekslÞ0, ksl=0,
and kssl=0; (f) the asymmetric Baxter phase, whereksl
Þ0, kslÞ0, andksslÞ0, but kslÞ ksl. It can be found that
the first four phases are reproduced in our results, but we can
not obtain the others. In addition, there are two partially
ordered antiferromagnetic phases in this work, but only one
appears in the mean-field results. In the mean time, those
first-order transition lines in the mean-field phase diagram
cannot be reproduced in this work.

III. THE ANISOTROPIC ASHKIN-TELLER MODEL

The recursion relations, in the parameter space
sv1,v2,v3d, of the renormalization-group transformation[1]
will produce all fixed points and result in the phase diagram
for the anisotropic AT model including the antiferromagnetic
interactions on the diamond hierarchical lattices for any
givenm andb. When the number of bonds per branch of the
generator of the diamond hierarchical lattices is odd, i.e.,b
=odd, there are 22 nontrivial fixed points in total. The loca-
tions of these nontrivial fixed points in the parameter space
sv1,v2,v3d are svI ,0 ,0d, s0,vI ,0d, s0,0,vId, s1,vI ,vId,
svI ,1 ,vId, svI ,vI ,1d, svI ,vI ,vI

2d, svI ,vI
2,vId, svI

2,vI ,vId,
s1/vI ,0 ,0d, s0,1/vI ,0d, s0,0,1/vId, s1,1/vI ,1 /vId,
s1/vI ,1 ,1 /vId, s1/vI ,1 /vI ,1d, s1/vI ,1 /vI ,1 /vI

2d,
s1/vI ,1 /vI

2,1 /vId, s1/vI
2,1 /vI ,1 /vId, s1,1,1/vPd,

s1,1/vP,1d, s1/vP,1 ,1d, and svP,vP,vPd, respectively. It
is essential to point out that bothvI andvP are dependent on
the values ofm andb [1]. As an example, Table II shows the
case ofb=3 andm=4, wherevI =0.3113 andvP=0.2209.

Also, through the calculation of the eigenvaluesl1, l2,
andl3 of the renormalization-group transformation matrixR
derived from the recursion relations, the correlation length
critical exponentn and the crossover exponentf can be
obtained from the scaling factorb and the relevant eigenval-
ues of the transformation matrixR for any givenm andb. As
an example, the results in the case ofb=3 and m=4 are
presented in Table II, from which it can be found that two
setsIk and Uk of the nontrivial fixed points have the same
correlation length critical exponentn as the Ising universality
class[31]. The setVk of the nontrivial fixed points is associ-
ated with two equal relevant eigenvalues identical with that
of the former two setsIk andUk, and have the same correla-
tion length critical exponentn as well as the only one cross-
over exponentf equal to 1. With respect to the setPk of the
nontrivial fixed points, they are related to three relevant ei-
genvalues, among which the two smaller ones are identical
with each other, hence they possess the same correlation
length critical exponentn which is identical with that of the

FIG. 2. Phase diagram in the parameter spacesv1,v3d for the
isotropic Ashkin-Teller model on a type of diamond hierarchical
lattice for b=3 andm=4, wherevI =0.3113,vP=0.2209.

FIG. 3. Phase diagram in the parameter spacesK4,Kd for the
isotropic Ashkin-Teller model on a type of diamond hierarchical
lattice for b=3 andm=4, wherevI =0.3113,vP=0.2209.
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four-state Potts model on the same lattice, as well as two
equal crossover exponentsf. Both the correlation length
critical exponentn and the crossover exponentf are depen-
dent on the concrete geometrical parametersb and m, and
not completely determined by the fractal dimension of the
lattice [1].

As shown in Fig. 4, which corresponds to the case ofb
=3 andm=4, the phase diagram consists of 11 phases when
the number of bonds per branch of the generator of the dia-
mond hierarchical lattices is odd, i.e.,b=odd. The details of
these 11 phases are as follows: in phase I the system is fer-
romagnetically ordered,ksl, ksl, andkssl all being nonzero;
in phase II the system is completely disordered,ksl, ksl, and
kssl all being zero; in phase III there is a partially ferromag-
netic ordering,ksl being nonzero, butksl and kssl being
zero; in phase IV there is a partially ferromagnetic ordering,
ksl being nonzero, butksl and kssl being zero; in phase V
there is a partially ferromagnetic ordering,kssl being non-
zero, butksl and ksl being zero; in phase VI there is a par-
tially antiferromagnetic ordering,ksl alternating from site to
site, but ksl and kssl being zero; in phase VII there is a
partially antiferromagnetic ordering,ksl alternating from site
to site, butksl and kssl being zero; in phase VIII there is a
partially antiferromagnetic ordering,kssl alternating from
site to site, butksl and ksl being zero; in phase IXksl is
ferromagnetically ordered, butksl and kssl are antiferro-

TABLE II. Nontrivial fixed points with eigenvalues and critical exponents for the anisotropic AT model
on a type of diamond hierarchical lattice in the case ofm=4 andb=3.

Fixed point sv1,v2,v3d sl1,l2,l3d n f

I1 0.3113,0,0 2.4481,0,0 1.2271

I2 0,0.3113,0 2.4481,0,0 1.2271

I3 0,0,0.3113 2.4481,0,0 1.2271

U1 1,0.3113,0.3113 2.4481,0,0 1.2271

U2 0.3113,1,0.3113 2.4481,0,0 1.2271

U3 0.3113,0.3113,1 2.4481,0,0 1.2271

V1 0.3113,0.3113,0.09693 2.4481,2.4481,0.4994 1.2271 1

V2 0.3113,0.09693,0.3113 2.4481,2.4481,0.4994 1.2271 1

V3 0.09693,0.3113,0.3113 2.4481,2.4481,0.4994 1.2271 1

I4 3.2119,0,0 2.4481,0,0 1.2271

I5 0,3.2119,0 2.4481,0,0 1.2271

I6 0,0,3.2119 2.4481,0,0 1.2271

U4 1,3.2119,3.2119 2.4481,0,0 1.2271

U5 3.2119,1,3.2119 2.4481,0,0 1.2271

U6 3.2119,3.2119,1 2.4481,0,0 1.2271

V4 3.2119,3.2119,10.3164 2.4481,2.4481,0.4994 1.2271 1

V5 3.2119,10.3164,3.2119 2.4481,2.4481,0.4994 1.2271 1

V6 10.3164,3.2119,3.2119 2.4481,2.4481,0.4994 1.2271 1

P1 1,1,4.5265 2.8689,1.5606,1.5606 1.0424 0.4223

P2 1,4.5265,1 2.8689,1.5606,1.5606 1.0424 0.4223

P3 4.5265,1,1 2.8689,1.5606,1.5606 1.0424 0.4223

P4 0.2209,0.2209,0.2209 2.8689,1.5606,1.5606 1.0424 0.4223

FIG. 4. Phase diagram in the parameter spacesv1,v2,v3d for
the anisotropic Ashkin-Teller model on a type of diamond hierar-
chical lattice forb=3 andm=4, wherevI =0.3113,vP=0.2209.
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magnetically ordered; in phase Xksl is ferromagnetically
ordered, butksl and kssl are antiferromagnetically ordered;
in phase XIkssl is ferromagnetically ordered, butksl and
ksl are antiferromagnetically ordered. Therefore, when con-
sidering the odd values ofb and the antiferromagnetic inter-
actions, one can obtain six new phases VI, VII, VIII, IX, X,
and XI associated with the partially antiferromagnetic order-
ing of the system, which have not been found in the previous
work [1].

So far, these antiferromagnetic phases have not been ob-
served for the anisotropic AT model on the square lattice,
however, we expect them to occur on the square lattice as
well because it is known that the investigation of statistical-
mechanics models on the hierarchical lattices may serve as
approximations for such models on the Bravais lattices.

IV. CONCLUSION AND DISCUSSION

In this paper, using the real-space renormalization-group
transformation, we study the phase transitions of the Ashkin-
Teller model including the antiferromagnetic interactions on
a type of diamond hierarchical lattices, of which the number
of bonds per branch of the generator is odd. We find that the
phase diagram, for the isotropic Ashkin-Teller model, con-
sists of five phases, two of which are associated with the
partially antiferromagnetic ordering of the system, i.e.,(a)
ksl=0, ksl=0, andkssl is antiferromagnetically ordered;(b)
both ksl and ksl are antiferromagnetically ordered, butkssl
is ferromagnetically ordered, while the phase diagram, for
the anisotropic Ashkin-Teller model, contains 11 phases, six
of which are related to the partially antiferromagnetic order-
ing of the system, i.e.,(a) ksl=0, kssl=0, andksl is antifer-
romagnetically ordered;(b) ksl=0, kssl=0, andksl is anti-
ferromagnetically ordered;(c) ksl=0, ksl=0, and kssl is
antiferromagnetically ordered;(d) both ksl and kssl are an-
tiferromagnetically ordered, butksl is ferromagnetically or-
dered; (e) both ksl and kssl are antiferromagnetically or-
dered, butksl is ferromagnetically ordered;(f) both ksl and
ksl are antiferromagnetically ordered, butkssl is ferromag-
netically ordered. In addition, the correlation length critical
exponents and the crossover exponents are also calculated.

It is worthwhile to mention that Qin and Yang[32] have
studied the Potts antiferromagnet on a family of diamond-

type hierarchical lattices, and found that the algebraically
ordered behavior predicted by Berker and Kadanoff[37] can
exist when the number of bonds per branch of the generator
of the hierarchical lattices is odd. Since the Ashkin-Teller
model reduces to a four-state Potts model forJs=Js=J4, it is
very interesting to know whether this algebraic order can
also exist in the Ashkin-Teller model on this type of diamond
hierarchical lattices. Here we present a brief discussion about
this problem. For a givenb, when m is large enough, two
new nontrivial fixed points can be obtained from the recur-
sion relations of the renormalization-group transformation
for the Ashkin-Teller model including the antiferromagnetic
interactions on the diamond hierarchical lattices withb
=odd. As an example, we consider the case ofb=3. In this
case, whenmù23, we can find the existence of two new
nontrivial fixed points in the parameter spacesv1,v2,v3d,
when m=23, the two fixed points are
s8.8581,8.8581,8.8581d and s12.0268,12.0268,12.0268d,
respectively, and the corresponding eigenvaluessl1,l2,l3d
of the renormalization-group transformation matrix are
s7.0378,7.0378,1.0971d and s7.7135,7.7135,0.9034d; when
m=24, the two fixed points ares6.1461,6.1461,6.1461d and
s19.9726,19.9726,19.9726d, respectively, and the corre-
sponding eigenvaluessl1,l2,l3d of the renormalization-
group transformation matrix ares6.2660,6.2660,1.3654d and
s8.8904,8.8904,0.6419d; ¯; when m=33, the two fixed
points are s3.1098,3.1098,3.1098d and
s139.3082,139.3082,139.3082d, respectively, and the corre-
sponding eigenvaluessl1,l2,l3d of the renormalization-
group transformation matrix ares4.9317,4.9317,1.9599d and
s13.8550,13.8550,0.1483d. Therefore, one can conclude that
the algebraically ordered behavior, i.e., a distinctive low-
temperature phase, will not exist in the Ashkin-Teller model
on this type of diamond hierarchical lattices, because both of
the two new fixed points are not completely stable.
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